题库首页
>
高中数学试卷库
2015届浙江省新高考单科综合调研卷理科数学试卷一(带解析)
2024-11-10
| 练习
|
| 浙江
第三方
选择题
1.
下列函数中,与函数
的奇偶性相同,且在
上单调性也相同的是( )
A.
B.
C.
D.
2.
定义
,其中
为向量
与
的夹角,若
,
,
,则
等于( )
A.-60
B.60
C.-60或60
D.6
3.
直线
的图象同时经过第一、二、四象限的一个必要不充分条件是 ( )
A.
且
B.
C.
且
D.
且
4.
已知
是等差数列
的前
项和,
,
,设
为数列
的前
项和,则
( )
A.2014
B.
C.2015
D.-2015
5.
过点
的直线,将圆形区域
分为两部分,使这两部分的面积之差最大,则该直线的方程为( )
A.
B.
C.
D.
6.
若将函数
的图象向右平移
个单位,得到的图象关于y轴对称,则
的最小值是 ( )
A.
B.
C.
D.
7.
已知
是两条不同的直线,
是两个不同的平面,给出下列命题:
①若
,
,则
;
②若
,
,且
,则
;
③若
,
,则
;
④若
,
,且
,则
.
其中正确命题的序号是( )
A.①④
B.②④
C.②③
D.①③
8.
已知点
,点
在曲线
上,若线段
与曲线
相交且交点恰为线段
的中点,则称点
为曲线
与曲线
的一个“相关点”,记曲线
与曲线
的“相关点”的个数为
,则 ( )
A.
B.
C.
D.
9.
已知双曲线
的中心为O,左焦点为F,P是双曲线上的一点
且
,则该双曲线的离心率是 ( )
A.
B.
C.
D.
10.
已知集合
,
,则下列结论正确的是( )
A.
B.
C.
D.
填空题
1.
已知
,且
,则
=__________.
2.
已知一个数列
的各项是0或1,首项为0,且在第k个0和第k+1个0之间有
个1,
即0,1,0,1,1,1,0,1,1,1,1,1,1, 1,0,…,则前2 015项中0的个数为____________ .
3.
已知抛物线
的准线与双曲线
交于
、
两点,点
为抛物线的焦点,若
为直角三角形,则双曲线离心率的取值范围是
.
4.
已知变量x,y满足约束条件
,若
恒成立,则实数
的取值范围为________.
5.
在平行四边形
中,
60°,
,
,
为平行四边形内一点,且
,若
,则
的最大值为___________.
6.
一个几何体的三视图如图所示,则此几何体的体积为__________.
7.
定义在R上的偶函数
,当
时,
,则不等式
的解集是_______________.
解答题
1.
(本题满分14分) 设函数
(Ⅰ)当
时,求
的值域;
(Ⅱ)已知
中,角
的对边分别为
,若
,
,求
面积的最大值.
2.
(本题满分14分) 已知函数
,其中
(Ⅰ)求函数
的定义域;
(Ⅱ)若对任意
恒有
,试确定
的取值范围.
3.
(本题满分14分)如图,
中,
是
的中点,
,
.将
沿
折起,使
点与图中
点重合.
(Ⅰ)求证:
;
(Ⅱ)当三棱锥
的体积取最大时,求二面角
的余弦值;
(Ⅲ)在(Ⅱ)的条件下,试问在线段
上是否存在一点
,使
与平面
所成的角的正弦值为
?证明你的结论.
4.
(本题满分15分)已知等差数列
中,
,公差
;数列
中,
为其前n项和,满足:
(Ⅰ)记
,求数列
的前
项和
;
(Ⅱ)求证:数列
是等比数列;
(Ⅲ)设数列
满足
,
为数列
的前
项积,若数列
满足
,且
,求数列
的最大值.
5.
(本题满分15分)已知椭圆
经过点
,其离心率为
,设直线
与椭圆
相交于
两点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知直线
与圆
相切,求证:
(
为坐标原点);
(Ⅲ)以线段
为邻边作平行四边形
,若点
在椭圆
上,且满足
(
为坐标原点),求实数
的取值范围.
其它试卷列表
2015届甘肃省天水市秦安县第二中学高三第五次检测文科数学试卷(带解析)
2015届山东省德州一中高三上学期1月月考文科数学试卷(带解析)
2015届山东省德州一中高三上学期1月月考理科数学试卷(带解析)
2015届甘肃省天水市秦安县第二中学高三第五次检测文科数学试卷(带解析)
2015届甘肃省天水市秦安县第二中学高三第五次检测理科数学试卷(带解析)
2015届甘肃省天水市高三一轮复习基础知识检测理科数学试卷(带解析)
2015学年江苏省涟水中学高一12月月考数学试题(带解析)
2015学年广东省博罗县博师高中高一上学期期中考试数学试卷(带解析)
2015学年甘肃省天水市秦安县二中高一上学期期末考试数学试卷(带解析)
2015学年甘肃省天水秦安县二中高二上学期期末考试理科数学卷(带解析)