题库首页
>
初中数学试卷库
2015届江苏省江都市武坚中学九年级上学期期中考试数学试卷(带解析)
2024-11-14
| 期中考试
| 九年级
| 江苏
第三方
选择题
1.
如果等腰三角形的两条边长分别是方程
的根,那么它的周长是( )
A.12
B.15
C.12或15
D.9
2.
下列说法中,正确的是( )
A.同一条弦所对的两条弧一定是等弧
B.长度相等的两条弧是等弧
C.正多边形一定是轴对称图形
D.三角形的外心到三角形各边的距离相等
3.
某小组10个女生做仰卧起坐,仰卧起坐次数的测试数据如下表,则这组数据的众数和中位数分别是 ( )
A.38.8和40
B.40和40
C.40和40.5
D.38.8和40.5
4.
已知关于
的一元二次方程
有一个解为
,则
的值为( )
A.
B.
C.
D.
5.
已知圆锥底面圆的半径为3cm,其侧面展开图是半圆,则该圆锥的母线长为( )
A.3cm
B.6cm
C.9cm
D.12cm
6.
如图在△ABC中,∠A=70°,⊙O截△ABC的三条边所得的弦长相等,则∠BOC的度数为( )
A.160°
B.135°
C.125°
D.110°
7.
用配方法解方程
时,原方程应变形为( )
A.
B.
C.
D.
填空题
1.
对于实数
,定义运算“*”:
,例如:
,因为
,所以
.若
是一元二次方程
的两个根,那么
.
2.
如图,将半径为2、圆心角为60°的扇形纸片AOB,在直线l上向右作无滑动的滚动至扇形A'O'B'处,则顶点O经过的路线总长为
.
3.
如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是
.
4.
如图,以BC为直径的⊙O与△ABC的另两边分别相交于点D、E.若∠A=70°,BC=2,则图中阴影部分面积为
.
5.
直径为10cm的⊙O中,弦AB=5cm,则弦AB所对的圆周角是
.
6.
某种衬衣的价格经过连续两次降价后,由每件150元降至96元,则平均每次降价的百分率为
.
7.
一组数据1,2,a,4,5的平均数是3,则这组数据的的方差为
.
8.
甲、乙、丙三名射击手的20次测试的平均成绩都是8环,方差分别是
,
,
,则成绩最稳定的是
.
9.
已知数据:2,
,3,5,6,5,则这组数据的极差是
.
10.
已知一元二次方程
的两根分别为
,
,则
.
解答题
1.
如图,∠MON=90
0
,矩形ABCD的顶点A,B分别在OM、ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1.运动过程中,点D到点O的最大距离为( )
A.
B.
C.
D.
2.
(本题满分8分)解方程:
(1)
(2)
3.
(本题满分8分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)求扇形统计图中C所对圆心角的度数;
(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
4.
(本题满分8分)已知
与
是互为相反数,且关于
的方程
有两个不相等的实数根,求
的取值范围.
5.
(本题满分8分)某联欢会上有一个有奖游戏,规则如下:有3张纸牌,背面都是喜羊羊头像,正面有1张是笑脸,其余2张是哭脸.现将3张纸牌洗匀后背面朝上摆放到桌上,若翻到的纸牌中有笑脸就有奖,没有笑脸就没有奖.
(1)小芳获得一次翻牌机会,她从中随机翻开一张纸牌.小芳得奖的概率是
.
(2)小明获得两次翻牌机会,他同时翻开两张纸牌.小明认为他得奖的概率是小芳的两倍,你赞同他的观点吗?请用树形图或列表法进行分析说明.
6.
(本题满分10分) 如图,某农场老板准备建造一个矩形羊圈ABCD,他打算让矩形羊圈的一面完全靠着墙MN,墙MN可利用的长度为25m,另外三面用长度为50m的篱笆围成(篱笆正好要全部用完,且不考虑接头的部分).
(1)若要使矩形羊圈的面积为300m2,则垂直于墙的一边长AB为多少米?
(2)农场老板又想将羊圈ABCD的面积重新建造成面积为320
,从而可以养更多的羊,请聪明的你告诉他:他的这个想法能实现吗?为什么?
7.
(本题满分10分) 如图,在△ABC中,∠ACB=90°,E为BC上一点,以CE为直径作⊙O,AB与⊙O相切于点D,连接CD,若BE=OE=2.
(1)求证:∠A=2∠DCB;
(2)求图中阴影部分的面积(結果保留
和根号).
8.
(本题满分10分)已知:△ABC是边长为6的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D、E,EF⊥AC,垂足为F.
(1)求证:直线EF是⊙O的切线;
(2)当直线DF与⊙O相切时,求⊙O的半径.
9.
(本题满分10分)有一种可食用的野生菌,刚上市时,外商李经理以每千克30元的市场价格收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这种野生菌在冷库中最多保存140天,同时,平均每天有3千克的野生菌损坏导致不能出售.
(1)若存放
天后,将这批野生菌一次性出售,设这批野生菌的销售总额为
元,试求出
与
之间的函数关系式;
(2)李经理将这批野生菌存放多少天后一次性全部出售可以获得22500元的利润?
10.
(本题满分12分)已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连接AD.
(1)求证:∠DAC=∠DBA;
(2)求证:P是线段AF的中点;
(3)连接CD,若CD=3,BD=4,求⊙O的半径和DE的长.
11.
(本题满分12分)如图,以点P
为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=
,将△ABC绕点P旋转180°,得到△MCB.
(1)求B、C两点的坐标;
(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;
(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.
其它试卷列表
2015届浙江省温州市龙港镇二中九年级上学期期中测试数学试卷(带解析)
2015届云南省剑川县九年级上学期第三次统一模拟考试数学试卷(带解析)
2015届四川省广安市岳池县白庙责任区九年级12月联考数学试卷(带解析)
2015届湖南省长沙麓山国际等四校九年级上学期第三次训练数学试卷(带解析)
2015学年重庆市马灌中学八年级上学期期末模拟数学试卷(带解析)
2015学年浙江省温州龙港镇二中八年级上学期期中检测数学试卷(带解析)
2015学年浙江省慈溪市范市初中八年级12月评估测试数学试卷(带解析)
2015学年新疆伊宁市第十六中学八年级上学期期中考试数学试卷(带解析)
2015学年新疆克拉玛依市十三中八年级上学期期末考试数学试卷(带解析)
2015学年四川省自贡赵化中学八年级上学期第三次段考数学试卷(带解析)