- 试题详情及答案解析
- 已知:如图,抛物线与x轴、y轴分别相交于点A(﹣1,0)、B(0,3)两点,其顶点为D.
(1)求该抛物线的解析式;
(2)若该抛物线与x轴的另一个交点为E.求四边形ABDE的面积;
(3)△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.- 答案:(1);(2)9;(3)相似,理由见试题解析.
- 试题分析:(1)由于抛物线的解析式中只有两个未知数,因此可根据A,B两点的坐标,用待定系数法求出抛物线的解析式.
(2)由于四边形ABDE不是规则的四边形,因此可将ABDE分割成几个规则的图形后再进行求解.可设抛物线的对称轴与x轴的交点为F,那么四边形ABDE的面积=三角形AOB的面积+直角梯形BOFD的面积+三角形DFE的面积,根据抛物线的解析式可求得D、E两点的坐标,因此就可求出DF、OF、EF的长,根据A、B两点的坐标可得出OA、OB的长,那么求这些图形面积的相关线段的长就都已求出,从而可得出四边形ABDE的面积.
(3)可先根据B、D、E的坐标,求出BD、DE、BE的长,由于三角形AOB是直角三角形,要想判定两三角形是否相似,就要先判断三角形BDE是否为直角三角形,可根据BD、DE、BE三边的长以及勾股定理,来判断出三角形BDE是否为直角三角形,如果是直角三角形,那么找出三角形BDE中的直角,然后看夹直角的两组对应边是否成比例即可得出两三角形是否相似.
试题解析:(1)由已知得:,解得c=3,b=2,∴抛物线的线的解析式为;
(2)由顶点坐标公式得顶点坐标为(1,4),所以对称轴为x=1,A,E关于x=1对称,所以E(3,0),
设对称轴与x轴的交点为F,所以四边形ABDE的面积=S△ABO+S梯形BOFD+S△DFE=AO·BO+(BO+DF)·OF+EF·DF=×1×3+(3+4)×1+×2×4=9;
(3)相似.如图,连接AB、BD、DE,过点D作DF⊥x轴于点F,过点B作BG⊥DF于点G.
BD=,BE=,
DE=,所以=20,即:,
所以△BDE是直角三角形,所以∠AOB=∠DBE=90°,且,所以△AOB∽△DEB.
考点:二次函数综合题.