题库首页 > 试卷库
试题详情及答案解析
如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且满足,过点C作⊙O的切线交AB的延长线于D点,交AF的延长线于E点.

(1)求证:AE⊥DE;
(2)若∠CBA=60°,AE=3,求AF的长.
答案:1)证明见解析;(2)2.
试题分析:(1)首先连接OC,由OC=OA,,易证得OC∥AE,又由DE切⊙O于点C,易证得AE⊥DE;
(2)由AB是⊙O的直径,可得△ABC是直角三角形,易得△AEC为直角三角形,根据AE=3求得AC的长,然后连接OF,可得△OAF为等边三角形,知AF=OA=AB,在△ACB中,利用已知条件求得答案.
试题解析:(1)证明:连接OC,

∵OC=OA,
∴∠BAC=∠OCA,

∴∠BAC=∠EAC,
∴∠EAC=∠OCA,
∴OC∥AE,
∵DE切⊙O于点C,
∴OC⊥DE,
∴AE⊥DE;
(2)解:∵AB是⊙O的直径,
∴△ABC是直角三角形,
∵∠CBA=60°,
∴∠BAC=∠EAC=30°,
∵△AEC为直角三角形,AE=3,
∴AC=2
连接OF,
∵OF=OA,∠OAF=∠BAC+∠EAC=60°,
∴△OAF为等边三角形,
∴AF=OA=AB,
在Rt△ACB中,AC=2,tan∠CBA=
∴BC=2,
∴AB=4,
∴AF=2.
考点:切线的性质.