题库首页 > 试卷库
试题详情及答案解析
(12分)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.

(1)求证:△AOG≌△ADG;
(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由.
答案:(1)证明见试题解析;(2)PG=OG+BP,理由见试题解析.
试题分析:(1)由AO=AD,AG=AG,利用“HL”可证△AOG≌△ADG;
(2)利用(1)的方法,同理可证△ADP≌△ABP,得出∠1=∠DAG,∠DAP=∠BAP,而∠1+∠DAG+∠DAP+∠BAP=90°,由此可求∠PAG的度数;根据两对全等三角形的性质,可得出线段OG、PG、BP之间的数量关系;
(3)由△AOG≌△ADG可知,∠AGO=∠AGD,而∠1+∠AGO=90°,∠2+∠PGC=90°,当∠1=∠2时,可证∠AGO=∠AGD=∠PGC,而∠AGO+∠AGD+∠PGC=180°,得出∠AGO=∠AGD=∠PGC=60°,即∠1=∠2=30°,解直角三角形求OG,PC,确定P、G两点坐标,得出直线PE的解析式.
试题解析:(1)∵∠AOG=∠ADG=90°,
在Rt△AOG和Rt△ADG中,∵AO=AD,AG-AG,∴△AOG≌△ADG(HL);
(2)PG=OG+BP.理由如下:
由(1)同理可证△ADP≌△ABP,则∠DAP=∠BAP,由(1)可知,∠1=∠DAG,又∠1+∠DAG+∠DAP+∠BAP=90°,∴2∠DAG+2∠DAP=90°,即∠DAG+∠DAP=45°,∴∠PAG=∠DAG+∠DAP=45°,
∵△AOG≌△ADG,△ADP≌△ABP,∴DG=OG,DP=BP,∴PG=DG+DP=OG+BP.
考点:全等三角形的判定与性质.