- 试题详情及答案解析
- 如图,在四棱锥中,底面是且边长为的菱形,侧面 是等边三角形,且平面⊥底面,为的中点.
(1)求证:平面;
(2)求 点G到平面PAB的距离。- 答案:(1)详见解析;(2).
- 试题分析:(1) 连接BD,要证平面,只要证即可,显然是等边三角形一边上的中线,结论成立;
(2)根据,利用等积变换法求点G到平面PAB的距离.
试题解析:解、(1)连接BD,
因为底面是且边长为的菱形,
所以是等边三角形,
又因为为的中点,所以,
而平面平面
且平面平面
∴平面 6分
(2)设点G到平面PAB的距离为h,△PAB中,∴面积S=
∵,∴,
∴ 12分
考点:1、空间中直线与平面的位置关系;2、等积变换法求点到平面的距离.