题库首页 > 试卷库
试题详情及答案解析
(12分)如图,已知抛物线轴交于A、B两点,与轴交于点C.

(1)求A、B、C三点的坐标.
(2)过点A作AP∥CB交抛物线于点P,求三角形ACP的面积.
答案:(1)A(-1,0),B(1,0),C(0,-1);(2)3.
试题分析:(1)先令y=0求出x的值即可得出A、B两点的坐标;再令x=0,求出y的值即可得出C点坐标;
(2)根据B、C两点的坐标用待定系数法求出直线BC的解析式,再根据AP∥CB,A(﹣1,0)可得出直线AP的解析式,故可得出点P的坐标,由勾股定理可求出AP,AC的长,进而得出结论.
试题解析:(1)当y=0,则,解得:,故A(﹣1,0),B(1,0),
当x=0,则y=﹣1,故C(0,﹣1);
(2)(2)设过B、C两点的直线解析式为),∵B(1,0),C(0,﹣1),
,解得:,∴直线BC的解析式为
∵AP∥CB,A(﹣1,0),∴直线AP的解析式为:,∴,解得
∴P(2,3),∴AP=,AC=
∵OB=OC=OA,∠BOC=90°,∴△ABC是等腰直角三角形,即AC⊥BC,AC⊥AP,
∴SACP=AP×AC=
考点:抛物线与x轴的交点.