题库首页 > 试卷库
试题详情及答案解析
(9分)如图,在等腰Rt△ABC中,∠ACB=90o,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE,连接DE、DF、EF。

(1)求证:△ADF≌△CEF;
(2)试证明△DFE是等腰直角三角形.
答案:(1)△ADF≌△CEF;(2)△DFE是等腰直角三角形.
思路点拨:(1)根据在等腰直角△ABC中,AC=BC,利用F是AB中点,∠A=∠FCE=∠ACF=45°,即可证明:△ADF≌△CEF.
(2)利用△ADF≌△CEF,∠AFD+∠DFC=∠CFE+∠DFC和∠AFC=90°即可证明△DFE是等腰直角三角形.
试题分析:(1)在等腰直角△ABC中,∠ACB=90°,AC=BC,
∴∠A=∠B=45°,
又∵F是AB中点,
∴∠ACF=∠FCB=45°,
即,∠A=∠FCE=∠ACF=45°,且AF=CF,
在△ADF与△CEF中,
∴△ADF≌△CEF(SAS);
(2)由(1)可知△ADF≌△CEF,
∴DF=FE,
∴△DFE是等腰三角形,
又∵∠AFD=∠CFE,
∴∠AFD+∠DFC=∠CFE+∠DFC,
∴∠AFC=∠DFE,
∵∠AFC=90°,
∴∠DFE=90°,
∴△DFE是等腰直角三角形.
考点:等腰直角三角形;全等三角形的判定与性质