题库首页 > 试卷库
试题详情及答案解析
(12分)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?
(成本=进价×销售量)
答案:见解析
试题分析:(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)×销售量,从而列出关系式,然后求二次函数的最大值;(2)令w=2000,然后解一元二次方程,从而求出销售单价;(3)根据抛物线的性质和图象,求出每月的成本.
试题解析:
解:(1)由题意,得:w = (x-20)·y=(x-20)·(
.
答:当销售单价定为35元时,每月可获得最大利润.
(2)由题意,得:解这个方程得:x1 = 30,x2 = 40.
答:李明想要每月获得2000元的利润,销售单价应定为30元或40元.
(3)∵,∴抛物线开口向下.
∴当30≤x≤40时,w≥2000.
∵x≤32,∴当30≤x≤32时,w≥2000.
设成本为P(元),由题意,得:


,∴P随x的增大而减小.∴当x = 32时,P最小=3600.
答:想要每月获得的利润不低于2000元,每月的成本最少为3600元.
考点:1.一元二次方程;2.二次函数的应用.