- 试题详情及答案解析
- 如图,点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点(其中P、Q不与端点重合),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,下列结论:⑴BP=CM;⑵△ABQ≌△CAP;⑶∠CMQ的度数始终等于60°;⑷当第秒或第秒时,△PBQ为直角三角形.其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个- 答案:A.
- 试题分析:A、在等边△ABC中,AB=BC.
∵点P、Q的速度都为1cm/s,
∴AP=PQ,
∴BP=CQ.
只有当CM=CQ时,BP=CM.故本选项错误;
B、∵△ABC是等边三角形
∴∠ABQ=∠CAP,AB=CA,
又∵点P、Q运动速度相同,
∴AP=BQ,
在△ABQ与△CAP中,
∵,
∴△ABQ≌△CAP(SAS).
故本选项正确;
C、点P、Q在运动的过程中,∠QMC不变.
理由:∵△ABQ≌△CAP,
∴∠BAQ=∠ACP,
∵∠QMC=∠ACP+∠MAC,
∴∠CMQ=∠BAQ+∠MAC=∠BAC=60°.故本选项正确;
D、设时间为t秒,则AP=BQ=tcm,PB=(4-t)cm,
当∠PQB=90°时,
∵∠B=60°,
∴PB=2BQ,即4-t=2t,t= ,
当∠BPQ=90°时,
∵∠B=60°,
∴BQ=2BP,得t=2(4-t),t=,
∴当第秒或第秒时,△PBQ为直角三角形.故本选项正确.
故选A.
考点:1.全等三角形的判定与性质;2.等边三角形的性质.