题库首页 > 试卷库
试题详情及答案解析
为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分均为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包括9分)为优秀.这次竞赛中甲、乙两组学生成绩分布的条形统计图如图所示.

(1)补充完成下面的成绩统计分析表:
组别
平均分
中位数
方差
合格率
优秀率
甲组
6.7
 
3.41
90%
20%
乙组
 
7.5
1.69
80%
10%
 
(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游偏上!”观察上表可知,小明是      组的学生;(填“甲”或“乙”)
(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组,请你给出两条支持乙组同学观点的理由.
答案:(1)6;7.1;(2)甲;(3)乙.
试题分析:(1)将甲组成绩按照从小到大的顺序排列,找出第5、6个成绩,求出平均数即为甲组的中位数;找出乙组成绩,求出乙组的平均分,填表即可;
(2)观察表格,成绩为7分处于中游略偏上,应为甲组的学生;
(3)乙组的平均分高于甲组,中位数高于甲组,方差小于甲组,所以乙组成绩好于甲组.
试题解析:(1)甲组的成绩为:3,6,6,6,6,6,7,8,9,10,甲组中位数为6,乙组成绩为5,5,6,7,7,8,8,8,8,9,平均分为(5+5+6+7+7+8+8+8+8+9)=7.1(分),
填表如下:
组别
平均分
中位数
方差
合格率
优秀率
甲组
6.7
6
3.41
90%
20%
乙组
7.1
7.5
1.69
80%
10%
 
(2)观察上表可知,小明是甲组的学生;
(3)①乙组同学平均分高于甲组;②乙组同学的方差小,比甲组稳定,而且集中在中上游,所以支持乙能同学的观点.
考点:1.条形统计图;2.加权平均数;3.中位数;4.方差.