题库首页 > 试卷库
试题详情及答案解析
已知a,b,c为正数,用排序不等式证明:2(a3+b3+c3)≥a2(b+c)+b2(a+c)+c2(a+b).
答案:见解析
试题分析:由(a3+b3)﹣(a2b+ab2)=(a+b)(a﹣b)2≥0,得a3+b3≥a2b+ab2,同理,a3+c3≥a2c+ac2,b3+c3≥b2c+bc2三式相加,能证明2(a3+b3+c3)≥a2(b+c)+b2(a+c)+c2(a+b).
证明:先证明:a3+b3≥a2b+ab2
∵(a3+b3)﹣(a2b+ab2
=a2(a﹣b)﹣b2(a﹣b)
=(a2﹣b2)(a﹣b)
=(a+b)(a﹣b)2
≥0,
∴a3+b3≥a2b+ab2,取等号的条件是a=b,
同理,a3+b3≥a2b+ab2
a3+c3≥a2c+ac2
b3+c3≥b2c+bc2
三式相加,得:
2(a3+b3+c3)≥a2(b+c)+b2(a+c)+c2(a+b),
取等号的条件是a=b=c,
∴2(a3+b3+c3)≥a2(b+c)+b2(a+c)+c2(a+b).
点评:本题考查不等式的证明,是基础题,解题时要认真审题,注意作差法的合理运用.