- 试题详情及答案解析
- 已知、是方程的两个根,则代数式的值为 .
- 答案:23.
- 试题分析:根据一元二次方程解的定义得到a2-a-3=0,b2-b-3=0,即a2=a+3,b2=b+3,则2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5,整理得2a2-2a+17,然后再把a2=a+3代入后合并即可.
试题解析:∵a,b是方程x2-x-3=0的两个根,
∴a2-a-3=0,b2-b-3=0,即a2=a+3,b2=b+3,
∴2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5
=2a2-2a+17
=2(a+3)-2a+17
=2a+6-2a+17
=23.
考点:1.因式分解的应用;2.一元二次方程的解;3.根与系数的关系.