题库首页 > 试卷库
试题详情及答案解析
如图,有一块直角三角形纸片,两直角边AC=5cm,BC=12cm,现将直角边AC沿直线AD折叠,使它恰好落在斜边AB上,且与AE重合,求CD的长.
答案:CD的长为cm.
试题分析:利用翻折变换的性质得出DE=CD,AC=AE=5cm,∠DEB=90°,进而利用勾股定理得出x的值.
试题解析:∵有一块直角三角形纸片两直角边AC=5cm,BC=12cm,
∴AB=13cm,
∵将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,
∴DE=CD,AC=AE=5cm,∠DEB=90°,
设CD=xcm,则BD=(12﹣x)cm,
故DE2+BE2=BD2
即x2+(13﹣5)2=(12﹣x)2
解得:x=
则CD的长为cm.
考点:勾股定理