题库首页 > 试卷库
试题详情及答案解析
已知:如图,△ABC和△DBE均为等腰直角三角形.

(1)求证:AD=CE;
(2)求证:AD和CE垂直.
答案:(1)证明见解析;(2)证明见解析.
试题分析:(1)要证AD=CE,只需证明△ABD≌△CBE,由于△ABC和△DBE均为等腰直角三角形,所以易证得结论.
(2)延长AD,根据(1)的结论,易证∠AFC=∠ABC=90°,所以AD⊥CE.
试题解析:(1)∵△ABC和△DBE均为等腰直角三角形,
∴AB=BC,BD=BE,∠ABC=∠DBE=90°,
∴∠ABC-∠DBC=∠DBE-∠DBC,
即∠ABD=∠CBE,
∴△ABD≌△CBE,
∴AD=CE.
(2)延长AD分别交BC和CE于G和F,
∵△ABD≌△CBE,
∴∠BAD=∠BCE,
∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,
又∵∠BGA=∠CGF,
∴∠AFC=∠ABC=90°,
∴AD⊥CE.

考点:1.等腰直角三角形;2.全等三角形的性质;3.全等三角形的判定.