题库首页
>
高中数学试卷库
2015届湖北省武汉市武昌区高三元月调研考试文科数学试卷(带解析)
2025-01-17
| 月考试卷
|
| 湖北
第三方
选择题
1.
如果复数
的模为
,则实数
的值为
A.2
B.
C.
D.
2.
一个几何体的三视图如图所示,则该几何体的体积为
A.12
B.24
C.40
D.72
3.
根据如下样本数据
x
3
4
5
6
7
y
4.0
2.5
0.5
0.5
2.0
得到的回归方程为
.若
,则
的值为
A.
B.
C.
D.
4.
已知正方形
的边长为
,
为
的中点,
为
的中点,则
A.0
B.1
C.2
D.4
5.
如图,取一个底面半径和高都为R的圆柱,从圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥,把所得的几何体与一个半径为R的半球放在同一水平面
上.用一平行于平面
的平面去截这两个几何体,截面分别为圆面和圆环面(图中阴影部分).设截面面积分别为
和
,那么
A.
B.
=
C.
D.不确定
6.
函数
满足
,则
的所有可能值为
A.1或
B.
C.1
D.1或
7.
函数
在区间
上单调递增,且在这个区间上的最大值是
,那么
A.
B.
C.2
D.4
8.
设斜率为
的直线
与双曲线
交于不同的两点P、Q,若点P、Q在
轴上的射影恰好为双曲线的两个焦点,则该双曲线的离心率是
A.
B.2
C.
D.3
9.
已知函数
的图象如图所示,若函数
在区间
上有10个零点(互不相同),则实数
的取值范围是
A.
B.
C.
D.
10.
已知全集为
,集合
,
,则
A.
B.
C.
D.
填空题
1.
化简
=_____________.
2.
已知函数
,其中
,
,则函数
在
上是增函数的概率为__________.
3.
给出以下数对序列:
(1,1)
(1,2) (2,1)
(1,3) (2,2) (3,1)
(1,4) (2,3) (3,2) (4,1)
记第
行的第
个数对为
,如
,则
(Ⅰ)
________;(Ⅱ)
________.
4.
以
为圆心,并且与直线
相切的圆的方程为
.
5.
阅读如图所示的程序框图,运行相应的程序,若输入
的值为100,则输出S的值为_______.
6.
已知点M的坐标
满足不等式组
则
的取值范围是_____________.
7.
已知某地区中小学生人数和近视情况如下表所示:
年级
人数
近视率
小学
3500
10%
初中
4500
30%
高中
2000
50%
为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,
则:(Ⅰ)样本容量为___________;(Ⅱ)抽取的高中生中,近视人数为___________.
解答题
1.
(本小题满分12分)已知
,
,
分别为
三内角
,
,
的对边,
,
,
.
(Ⅰ)求
的值;
(Ⅱ)求
的面积.
2.
(本小题满分12分)已知数列
满足
,
;数列
满足
,
,且
为等差数列.
(Ⅰ)求数列
和
的通项公式;
(Ⅱ)求数列
的前
项和
.
3.
(本小题满分13分)如图,在直四棱柱
中,底面是边长为
的正方形,
,点E在棱
上运动.
(Ⅰ)证明:
;
(Ⅱ)若三棱锥
的体积为
时,求异面直线
,
所成的角.
4.
(本小题满分14分)已知函数
.
(Ⅰ)求函数
的单调区间;
(Ⅱ)设
,求
在区间
上的最大值;
(Ⅲ)证明:对
,不等式
成立.
5.
(本小题满分14分)已知椭圆C:
的焦距为4,其长轴长和短轴长之比为
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设F为椭圆C的右焦点,T为直线
上纵坐标不为0的任意一点,过F作TF的垂线交椭圆C于点P,Q.
(ⅰ)若OT平分线段PQ(其中O为坐标原点),求
的值;
(ⅱ)在(ⅰ)的条件下,当
最小时,求点T的坐标.
其它试卷列表
2015届甘肃省天水市秦安县第二中学高三第五次检测文科数学试卷(带解析)
2015届山东省德州一中高三上学期1月月考文科数学试卷(带解析)
2015届山东省德州一中高三上学期1月月考理科数学试卷(带解析)
2015届甘肃省天水市秦安县第二中学高三第五次检测文科数学试卷(带解析)
2015届甘肃省天水市秦安县第二中学高三第五次检测理科数学试卷(带解析)
2015届甘肃省天水市高三一轮复习基础知识检测理科数学试卷(带解析)
2015学年江苏省涟水中学高一12月月考数学试题(带解析)
2015学年广东省博罗县博师高中高一上学期期中考试数学试卷(带解析)
2015学年甘肃省天水市秦安县二中高一上学期期末考试数学试卷(带解析)
2015学年甘肃省天水秦安县二中高二上学期期末考试理科数学卷(带解析)