题库首页 > 试卷库
试题详情及答案解析
(2013•鄂州)如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=( )
A.6B.8C.10D.12
答案:B
试题分析:MN表示直线a与直线b之间的距离,是定值,只要满足AM+NB的值最小即可,作点A关于直线a的对称点A′,并延长AA′,过点B作BE⊥AA′于点E,连接A′B交直线b于点N,过点N作NM⊥直线a,连接AM,则可判断四边形AA′NM是平行四边形,得出AM=A′N,由两点之间线段最短,可得此时AM+NB的值最小.过点B作BE⊥AA′,交AA′于点E,在Rt△ABE中求出BE,在Rt△A′BE中求出A′B即可得出AM+NB.
解:作点A关于直线a的对称点A′,并延长AA′,过点B作BE⊥AA′于点E,连接A′B交直线b于点N,过点N作NM⊥直线a,连接AM,
∵A到直线a的距离为2,a与b之间的距离为4,
∴AA′=MN=4,
∴四边形AA′NM是平行四边形,
∴AM+NB=A′N+NB=A′B,
过点B作BE⊥AA′,交AA′于点E,
易得AE=2+4+3=9,AB=2,A′E=2+3=5,
在Rt△AEB中,BE==
在Rt△A′EB中,A′B==8.
故选:B.

点评:本题考查了勾股定理的应用、平行线之间的距离,解答本题的关键是找到点M、点N的位置,难度较大,注意掌握两点之间线段最短.