- 试题详情及答案解析
- (2007•杭州一模)已知x,y,z满足方程x2+(y﹣2)2+(z+2)2=2,则的最大值是( )
- 答案:A
- 试题分析:由于x,y,z满足方程x2+(y﹣2)2+(z+2)2=2,在空间直角坐标中,它表示球心在A(0,2,﹣2)半径为r=的球,球面上一点P(x,y,z)到原点的距离为:,利用几何图形的特点即可求得的最大值是OA+r.
解:因x,y,z满足方程x2+(y﹣2)2+(z+2)2=2,
在空间直角坐标中,它表示球心在A(0,2,﹣2)半径为r=的球,
球面上一点P(x,y,z)到原点的距离为:
则的最大值是即为:
OA+r=+=3.
故选A.
点评:本题主要考查随时随最值的求法,解答关键是数形结合,把满足方程x2+(y﹣2)2+(z+2)2=2点P(x,y,z)看成是球心在A(0,2,﹣2)半径为r=的球.