- 试题详情及答案解析
- 如图所示,工人站在水平地面,通过滑轮组打捞一块沉没在水池底部的实心金属物体A。工人用力将物体A竖直缓慢拉起,在整个提升过程中,物体A始终以0.1m/s的速度匀速上升。物体A没有露出水面之前滑轮组的机械效率为η1,工人对水平地面的压强为p1;当物体A完全露出水面之后滑轮组的机械效率为η2,工人对水平地面的压强为p2。若物体A重为320N,动滑轮重40N,工人双脚与地面的接触面积是400cm2,p1-p2=250Pa,绳重、水的阻力及滑轮轮与轴间的摩擦均可忽略不计,g取10N/kg,求:
(1)当物体A刚离开底部,受到水的浮力;
(2)金属A的密度;
(3)当物体A完全露出水面以后,人拉绳子的功率;
(4)η1与η2的比值。- 答案:(1)40N (2) 8×103kg/m3 (3) 36W (4) 63∶64
- 试题分析:(1)工人站在水平地面,受到重力G人、地面支持力F支和绳子拉力F拉,且工人静止,可以得到:
F支+F拉=G人
F支和F压是相互作用力,大小相等;F拉和人拉绳子的力F(两次拉力分别用F1和F2表示)是相互作用力,大小相等,可以得到:F压=G人-F
人对地面的压强P=F压/S ,则P1=(G人-F1)/S P2=(G人-F2)/S
P1-P2=[(G人-F1)/S]-(G人-F2)/S ="(" F2-F1)/S
由已知:(F2-F1)/ 400×10-4m2=250Pa 解出:F2-F1=10N ①
在水中时,动滑轮受到重力G动、物体A对绳子的拉力FA1和4根绳子拉动滑轮的力4F1,由动滑轮做匀速直线运动,可以得到:4F1=G动+FA1
物体A受到重力GA、浮力F浮和绳子拉力FA1/,由物体A匀速直线运动,得到:GA=F浮+FA1/
FA和FA/是相互作用力,大小相等,由两式可得:
4F1+F浮=G动+GA ②
同理:在水面时上,动滑轮受到重力G动、物体A通过绳子的拉力FA2和4根绳子拉动滑轮的力4F2,由动滑轮做匀速直线运动,可以得到:4F2=G动+FA2
物体A受到重力GA、绳子拉力FA2/,由物体A匀速直线运动,得到:GA=FA2/
FA2和FA2/是相互作用力,大小相等,由两式可得:
4F2=G动+GA ③
由②、③式可以得到:4(F2-F1)=F浮
代入①式,得到F浮=4(F2-F1)=4×10N=40N
(2)根据阿基米德原理,F浮=ρ水·V排·g
得:物体A的体积VA=V排=F浮/(ρ水·g)=40N/(103kg/m3×10N/kg)=4×10-3m3
物体A的质量mA=GA /g=320N/10N/kg =32kg
物体A的密度ρA=mA/VA=32kg/4×10-3m3=8×103kg/m3
(3)物体A在水面上匀速直线运动时,4F2=G动+GA =40N+320N=360N,F2=90N
人拉力的功率为p人=F2 ·4vA=90N×4×0.1m/s=36W
(4)物体A在水面下和水面上的效率分别为:η1和η2
根据机械效率公式,η=W有/W总
η1=(GA-F浮)h/4h·F1=(GA-F浮)/( GA+G动 -F浮)=(320N-40N)/(320N+40N-40N)=7/8
η2=GAh/4h·F2=GA /( GA+G动) =320N/(320N+40N)=8/9
η1∶η2=7/8∶(8/9)=63∶64
考点:力的平衡;压强;浮力;机械效率