- 试题详情及答案解析
- (2014•湖北模拟)从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( )
A.“至少有一个红球”与“都是黑球” |
B.“至少有一个黑球”与“都是黑球” |
C.“至少有一个黑球”与“至少有1个红球” |
D.“恰有1个黑球”与“恰有2个黑球” |
- 答案:D
- 试题分析:列举每个事件所包含的基本事件,结合互斥事件和对立事件的定义,依次验证即可
解:对于A:事件:“至少有一个红球”与事件:“都是黑球”,这两个事件是对立事件,∴A不正确
对于B:事件:“至少有一个黑球”与事件:“都是黑球”可以同时发生,如:一个红球一个黑球,∴B不正确
对于C:事件:“至少有一个黑球”与事件:“至少有1个红球”可以同时发生,如:一个红球一个黑球,∴C不正确
对于D:事件:“恰有一个黑球”与“恰有2个黑球”不能同时发生,∴这两个事件是互斥事件,
又由从装有2个红球和2个黑球的口袋内任取2个球,
得到所有事件为“恰有1个黑球”与“恰有2个黑球”以及“恰有2个红球”三种情况,故这两个事件是不是对立事件,
∴D正确
故选D
点评:本题考查互斥事件与对立事件.首先要求理解互斥事件和对立事件的定义,理解互斥事件与对立事件的联系与区别.同时要能够准确列举某一事件所包含的基本事件.属简单题