- 试题详情及答案解析
- 如图,A是半圆上的一个二等分点,B是半圆上的一个六等分点,P是直径MN上的一个动点,⊙O半径r=1,则PA+PB的最小值是( )
- 答案:C
- 试题分析:本题是要在MN上找一点P,使PA+PB的值最小,设A′是A关于MN的对称点,连接A′B,与MN的交点即为点P.此时PA+PB=A′B是最小值,可证△OA′B是等腰三角形,从而得出结果.
解:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,AA′.
作OQ⊥A′B,
∵点A与A′关于MN对称,点A是半圆上的一个二等分点,
∴∠A′ON=∠AON=90°,PA=PA′,
∵B是半圆上的一个六等分点,
∴∠BON=30°,
∴∠A′OB=∠A′ON+∠BON=120°,
又∵OA=OA′=1,∠A′=30°,
∴A′Q=OA′cos30°=,
∴A′B=.
∴PA+PB=PA′+PB=A′B=.
故选:C.
点评:此题考查了轴对称﹣最短路线问题,正确确定P点的位置是解题的关键,确定点P的位置这类题在课本中有原题,因此加强课本题目的训练至关重要.