- 试题详情及答案解析
- 某校高二年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X表示其中男生的人数,
(1)请列出X的分布列;
(2)根据你所列的分布列求选出的4人中至少有3名男生的概率.- 答案:(1)
X
| 0
| 1
| 2
| 3
| 4
|
P
|
|
|
|
|
|
(2) - 试题分析:(1)本题是一个超几何分步,用X表示其中男生的人数,X可能取的值为0,1,2,3,4.结合变量对应的事件和超几何分布的概率公式,写出变量的分布列和数学期望.
(2)选出的4人中至少有3名男生,表示男生有3个人,或者男生有4人,根据第一问做出的概率值,根据互斥事件的概率公式得到结果.
解:(1)依题意得,随机变量X服从超几何分布,
随机变量X表示其中男生的人数,X可能取的值为0,1,2,3,4.
.
∴所以X的分布列为:
X
| 0
| 1
| 2
| 3
| 4
|
P
|
|
|
|
|
|
(2)由分布列可知至少选3名男生,
即P(X≥3)=P(X=3)+P(X=4)=+=.
点评:本小题考查离散型随机变量分布列和数学期望,考查超几何分步,考查互斥事件的概率,考查运用概率知识解决实际问题的能力.