- 试题详情及答案解析
- 如图,在海岸线一侧有一休闲游乐场,游乐场的前一部分边界为曲线段,该曲线段是函数,的图像,图像的最高点为.边界的中间部分为长千米的直线段,且.游乐场的后一部分边界是以为圆心的一段圆弧.
(1)求曲线段的函数表达式;
(2)曲线段上的入口距海岸线最近距离为千米,现准备从入口修一条笔直的景观路到,求景观路长;
(3)如图,在扇形区域内建一个平行四边形休闲区,平行四边形的一边在海岸线上,一边在半径上,另外一个顶点在圆弧上,且,求平行四边形休闲区面积的最大值及此时的值.- 答案:(1);(2);(3)时,平行四边形面积最大值为
- 试题分析:(1)求函数的解析式时,比较容易得出,困难的是确定待定系数的值,常用如下方法:一是由即可求出的值;确定的值,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标,则令(或),即可求出;二是代入点的坐标,利用一些已知点坐标代入解析式,再结合图形解出,若对的符号或对的范围有要求,则可利用诱导公式进行变换使其符合要求;(2)运用公式时要注意审查公式成立的条件,要注意和差、倍角的相对性,要注意升幂、降幂的灵活运用;重视三角函数的三变:三变指变角、变名、变式;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等,适当选择公式进行变形;(3)把形如化为,可进一步研究函数的周期、单调性、最值和对称性.
试题解析:解:(1)由已知条件,得 1分[
又∵ 2分
又∵当时,有 2分
∴ 曲线段的解析式为. 1分
(2)由得
2分
又 2分
1分
∴ 景观路长为千米 1分
(3)如图, 1分
作轴于点,在中, 1分
在中, 1分
∴ 1分
1分
2分
当时,即时,平行四边形面积最大值为 1分
考点:1、根据函数图象求函数解析式;2、三角函数化简;3、求三角函数的最值.