- 试题详情及答案解析
- P为⊙O内一点,且OP=2,若⊙O的半径为3,则过点P的最短的弦是( )
A.1 | B.2 | C. | D.2 |
- 答案:D
- 试题分析:先作出最短弦AB,过P作弦AB⊥OP,连接OB,构造直角三角形,由勾股定理求出BP,根据垂径定理求出AB即可.
解:
过P作弦AB⊥OP,则AB是过P点的最短弦,连接OB,
由勾股定理得:BP===,
∵OP⊥AB,OP过圆心O,
∴AB=2BP=2,
故选D.
点评:本题考查了垂径定理和勾股定理的应用,关键是能作出最短弦,题目比较典型,主要培养了学生运用定理进行推理的能力.