- 试题详情及答案解析
- 一副斜边相等的直角三角板(∠DAC=45°,∠BAC=30°),按如图所示的方式在平面内拼成一个四边形.A,B,C,D四点在同一个圆上吗?请说明理由.
- 答案:A
- 试题分析:取AC的中点O,连接OB,OD,根据直角三角形斜边上中线性质得出OB=OD=AC=OA=OC,根据对圆的认识得出答案.
解:A、B、C、D能在同一个圆上,
理由是:取AC的中点O,连接OB,OD,
∵∠B=∠D=90°,
∴OD=AC=OA=OC,BO=AC=OA=OC,
∴OA=OB=OC=OD,
∴A、B、C、D在以O为圆心,以OA为半径的圆上,
即A、B、C、D能在同一个圆上.
点评:本题考查了直角三角形斜边上中线性质和对圆的认识的应用,注意:直角三角形斜边上中线等于斜边的一半.