- 试题详情及答案解析
- 如图所示,在△ABC中,AB=AC,任意延长CA到P,再延长AB到Q,使AP=BQ,
求证:△ABC的外心O与点A、P、Q四点共圆.
- 答案:见解析
- 试题分析:先作△ABC的外接圆⊙O,并作OE⊥AB于E,OF⊥AC于F,连接OP、OQ、OB、OA,证出BE=AF,OE=OF,再证Rt△OPF≌Rt△OQE,得到∠P=∠Q即可得到答案.
证明:作△ABC的外接圆⊙O,并作OE⊥AB于E,OF⊥AC于F,连接OP、OQ、OB、OA,
∵O是△ABC的外心,
∴OE=OF,OB=OA,
由勾股定理得:BE2=OB2﹣OE2,AF2=OA2﹣OF2,
∴BE=AF,
∵AP=BQ,
∴PF=QE,
∵OE⊥AB,OF⊥AC
∴∠OFP=∠OEQ=90°,
∴Rt△OPF≌Rt△OQE,
∴∠P=∠Q,
∴O、A、P、Q四点共圆.
即:△ABC的外心O与点A、P、Q四点共圆.
点评:本题主要考查了四点共圆,勾股定理,全等三角形的性质和判定,确定圆的条件等知识点,作辅助线构造全等三角形证
∠P=∠Q是解此题的关键.