- 试题详情及答案解析
- 如图,A为圆O上半圆上的一个三等分点,B是AM的中点,P为直径MN上的一动点,圆O的半径为1,
求AP+BP的最小值.
- 答案:
- 试题分析:找点A或点B关于MN的对称点,再连接其中一点的对称点和另一点,和MN的交点P就是所求作的位置.根据题意先求出∠CAE,再根据勾股定理求出AE,即可得出PA+PB的最小值.
解:作点B关于MN的对称点E,连接AE交MN于点P
此时PA+PB最小,且等于AE.
作直径AC,连接CE.
根据垂径定理得弧BM=弧ME.
∵A是半圆的三等分点,
∴∠AOM=60°,∠MOE=∠AOM=30°,
∴∠AOE=90°,
∴∠CAE=45°,
又AC为圆的直径,∴∠AEC=90°,
∴∠C=∠CAE=45°,
∴CE=AE=AC=,
即AP+BP的最小值是.
点评:本题考查了垂径定理及勾股定理的知识,此题的难点是确定点P的位置:找点B关于MN的对称点,再连接其中一点的对称点和另一点,和AE于MN的交点P就是所求作的位置.再根据弧的度数和圆心角的度数求出∠CAE,根据勾股定理求出AE即可.