- 试题详情及答案解析
- 15分)小明用台秤研究人在升降电梯中的超重与失重现象.他在地面上用台秤称得其体重为500 N,再将台秤移至电梯内称其体重,电梯从t=0时由静止开始运动到t=11 s时停止,得到台秤的示数F随时间t变化的图象如图所示,g取10 m/s2.求:
(1)小明在0~2s内加速度a1的大小,并判断在这段时间内他处于超重还是失重状态;
(2)在10~11s内,台秤的示数F3;
(3)小明运动的总位移x.- 答案:失重 600 N 19 m
- 试题分析:(1)由图象可知,在0~2 s内,台秤对小明的支持力F1=450 N
由牛顿第二定律有mg-F1=ma1 (2分)
解得a1=1 m/s2 (1分)
加速度方向竖直向下,故小明处于失重状态 (2分)
(2)设在10~11 s内小明的加速度为a3,时间为t3,0~2 s的时间为t1,则
a1t1=a3t3 (1分)
解得a3=2 m/s2 (1分)
由牛顿第二定律有F3一mg=ma3 (2分)
解得F3=600 N (1分)
(3)0~2 s内位移x1=a1t=2 m (1分)
2~10s内位移x2=a1t1t2=16 m (1分)
10~11s内位移x3=a3t=1 m (1分)
小明运动的总位移x=x1+x2+x3=19 m
考点:本题考查牛顿运动定律、匀变速直线运动规律。