所在平面与平面四边形
所在平面互相垂直,△
是等腰直角三角形,

;
的中点为
,在直线
上是否存在一点
,使得
?若存在,请指出点
的位置,并证明你的结论;若不存在,请说明理由;
为
的中点,使得
.
⊥平面
,只需证
⊥
、
⊥
,其中
⊥
,可由平面
⊥平面
,
⊥交线
,即
⊥平面
得到.而
⊥
可由
,
得到;(2)存在点
,要使
,则需在平面
上找到一条
的平行线,因为线段
的中点为
,所以
,由此可以想到取点
为
的中点,点
为
的中点,连接
,即可得到四边形
为平行四边形,从而使问题得到解决.
⊥平面
,
平面
,平面
平面
,又
⊥
,所以
⊥平面
,所以
⊥
.
为等腰直角三角形,
,所以
,又因为
,所以
,即
⊥
.


,所以
⊥平面
.
,当
为线段
的中点时,
∥平面
,取
的中点
,连接
,则
∥
∥
,所以四边形
为平行四边形,所以
∥
,因为
在平面
内,
不在平面
内,所以
∥平面
.