题库首页 > 试卷库
试题详情及答案解析
(2014•重庆三模)对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f′′(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=,则g()+=( )
A.2011B.2012C.2013D.2014
答案:B
试题分析:正确求出对称中心,利用对称中心的性质即可求出.
解:由题意,g(x)=x2﹣x+3,∴g(x)=2x﹣1,
令g(x)=0,解得
,∴函数g(x)的对称中心为
,…
∴g()+=2012.
故选B.
点评:正确求出对称中心并掌握对称中心的性质是解题的关键.