题库首页 > 试卷库
试题详情及答案解析
(2014•河南一模)已知定义在(0,+∞)上的单调函数f(x),对∀x∈(0,+∞),都有f[f(x)﹣log3 x]=4,则函数g(x)=f(x﹣1)﹣f′(x﹣1)﹣3的零点所在区间是( )
A.(1,2)B.(2,3)C.(,1)D.(0,
答案:B
试题分析:由∀x∈(0,+∞),都有f[f(x)﹣log3 x]=4,可设f(x)﹣log3 x=c(c为常数),求出g(x)的解析式,并说明g(x)的单调性,计算g(2),g(3),确定符号,由零点存在定理即可得到答案.
解:∵对∀x∈(0,+∞),都有f[f(x)﹣log3 x]=4,
∴可设f(x)﹣log3 x=c(c为常数),则f(x)=log3 x+c,
∴f[f(x)﹣log3 x]=f(c)=log3c+c=4,∴c=3,
∴f(x)=log3 x+3,
∴g(x)=f(x﹣1)﹣f′(x﹣1)﹣3=log3(x﹣1)﹣log3e在(1,+∞)上为增函数,
g(2)=﹣log3e<0,g(3)=log32﹣log3e=log3>0,
由零点存在定理得,函数g(x)的零点所在的区间为(2,3).
故选B.
点评:本题主要考查函数的零点的判断,考查应用零点存在定理判断函数的零点所在范围,同时考查函数导数的运算和函数的单调性,是一道函数综合题.