- 试题详情及答案解析
- (2013•成都模拟)如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则BB1与平面AB1C1所成的角是( )
- 答案:A
- 试题分析:以B为坐标原点,建立空间直角坐标系,利用与平面AB1C1所的一个法向量的夹角,求出则BB1与平面AB1C1所成的角.
解:以B为坐标原点,以与BC垂直的直线为x轴,BC为y轴,建立空间直角坐标系,
则A(,1,0),B1(0,0,3),C1(0,2,3),=(﹣,﹣1,3),=(0,2,0),=(0,0,3).
设平面AB1C1所的一个法向量为=(x,y,z)
则即,取z=1,则得=(﹣,0,1),
∵cos<,>===,
∴BB1与平面AB1C1所成的角的正弦值为,
∴BB1与平面AB1C1所成的角为
故选A.
点评:本题考查线面角的计算,利用了空间向量的方法.要注意相关点和向量坐标的准确性,及转化时角的相等或互余关系.