- 试题详情及答案解析
- 受国内外复杂多变的经济环境影响,去年1至7月,原材料价格一路攀升,长沙市某服装厂每件衣服原材料的成本y1(元)与月份x(1≤x≤7,且x为整数)之间的函数关系如下表:
月份x
| 1
| 2
| 3
| 4
| 5
| 6
| 7
|
成本(元/件)
| 56
| 58
| 60
| 62
| 64
| 66
| 68
|
8至12月,随着经济环境的好转,原材料价格的涨势趋缓,每件原材料成本y2(元)与月份x的函数关系式为y2=x+62(8≤x≤12,且x为整数).
(1)请观察表格中的数据,用学过的函数相关知识求y1与x的函数关系式.
(2)若去年该衣服每件的出厂价为100元,生产每件衣服的其他成本为8元,该衣服在1至7月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤7,且x为整数); 8至12月的销售量p2(万件)与月份x满足关系式p2=﹣0.1x+3(8≤x≤12,且x为整数),该厂去年哪个月利润最大?并求出最大利润.- 答案:解:(1)由表格中数据可猜测,是x的一次函数.
设
则
解得:
∴,
经检验其它各点都符合该解析式,
∴(1≤x≤7,且x为整数).
(2)设去年第x月的利润为w万元.
当1≤x≤7,且x为整数时,
∴当x=4时,w最大=45万元;
当8≤x≤12,且x为整数时,
∴当x=8时,w最大=48.4万元.
∴该厂去年8月利润最大,最大利润为48.4万元 - 试题分析:(1)由表格中数据可猜测,y1是x的一次函数.把表格(1)中任意两组数据代入直线解析式可得y1的解析式.
(2)分情况探讨得:1≤x≤7时,利润=P1×(售价﹣各种成本);80≤x≤12时,利润=P2×(售价﹣各种成本);并求得相应的最大利润即
考点:二次函数的应用
点评:本题综合考查了一次函数和二次函数的应用;根据二次函数的最值及相应的取值范围得到一定范围内的最大值是解决本题的易错点