- 试题详情及答案解析
- 小明在学习“锐角三角函数”中发现,将如图的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以求出67.5°角的正切值为 .
- 答案:
- ∵将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,∴AB=BE,∠AEB=∠EAB=45°,∵还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,∴AE=EF,∠EAF=∠EFA=45°÷2=22.5°,∴∠FAB=67.5°,设AB=x,则AE=EF=x,∴tan∠FAB=tan67.5°=.
考点:翻折变换(折叠问题).
点评:此题主要考查了翻折变换的性质,根据已知得出∠FAB=67.5°以及AE=EF是解题关键.