- 试题详情及答案解析
- (本题9分)阅读下列一段文字,然后回答下列问题.
已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离,
同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2-x1|或|y2-y1|.
(1)已知A(2,4)、B(-3,-8),试求A、B两点间的距离;
(2)已知A、B在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为-1,试求A、B两点间的距离;
(3)已知一个三角形各顶点坐标为D(1,6)、E(-2,2)、F(4,2),你能判定此三角形的形状吗?说明理由;
(4)平面直角坐标中,在x轴上找一点P,使PD+PF的长度最短,求出点P的坐标以及PD+PF的最短长度.- 答案:解:(1)∵A(2,4)、B(-3,-8),
∴;
(2)∵A、B在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为-1,
∴AB=|4-(-1)|=5;
(3)△DEF为等腰三角形,理由为:
∵D(1,6)、E(-2,2)、F(4,2),
,,,即DE=DF,则△DEF为等腰三角形;
(4)做出F关于x轴的对称点F′,连接DF′,与x轴交于点P,此时DP+PF最短,
设直线DF′解析式为y=kx+b,
将D(1,6),F′(4,-2)代入得:,
解得:,
∴直线DF′解析式为,
令y=0,得:,即,
∵PF=PF′,
∴PD+PF=DP+PF′=DF′=,
则PD+PF的长度最短时点P的坐标为,此时PD+PF的最短长度为. - 试题分析:(1)根据阅读材料中的A与B的坐标,利用两点间的距离公式求出A与B的距离即可;
(2)根据两点在平行于y轴的直线上,根据A与B的纵坐标求出AB的距离即可;
(3)由三顶点坐标求出DE,DF,EF的长,即可判定此三角形形状;
(4)找出F关于x轴的对称点F′,连接DF′,与x轴交于P点,此时PD+PF最短,设直线DF′的解析式为y=kx+b,将D与F′的坐标代入求出k与b的值,确定出直线DF′解析式,令y=0求出x的值,确定出P坐标,由D与F′坐标,利用两点间的距离公式求出DF′的长,即为PD+PF的最短长度.
考点:一次函数综合题.
点评:此题属于一次函数综合题,待定系数法求一次函数解析式,以及一次函数与x轴的交点,弄清题中材料中的距离公式是解本题的关键.