- 试题详情及答案解析
- (10分)已知命题p:x1和x2是方程x2﹣mx﹣2=0的两个实根,不等式a2﹣5a﹣3≥|x1﹣x2|对任意实数m∈[﹣1,1]恒成立;命题q:不等式ax2+2x﹣1>0有解,若命题p是真命题,命题q是假命题,求a的取值范围.
- 答案:a≤﹣1.
- 试题分析:本题考查的知识点是命题的真假判定,由命题p:x1和x2是方程x2﹣mx﹣2=0的两个实根,不等式a2﹣5a﹣3≥|x1﹣x2|对任意实数m∈[﹣1,1]恒成立,我们易求出P是真命题时,a的取值范围;由命题q:不等式ax2+2x﹣1>0有解,我们也易求出q为假命题时的a的取值范围,再由命题p是真命题,命题q是假命题,求出两个范围的公共部分,即得答案.
解:∵x1,x2是方程x2﹣mx﹣2=0的两个实根
∴
∴|x1﹣x2|=
=
∴当m∈[﹣1,1]时,|x1﹣x2|max=3,
由不等式a2﹣5a﹣3≥|x1﹣x2|对任意实数m∈[﹣1,1]恒成立.
可得:a2﹣5a﹣3≥3,∴a≥6或a≤﹣1,
∴命题p为真命题时a≥6或a≤﹣1,
命题q:不等式ax2+2x﹣1>0有解.
①当a>0时,显然有解.
②当a=0时,2x﹣1>0有解
③当a<0时,∵ax2+2x﹣1>0有解,
∴△=4+4a>0,∴﹣1<a<0,
从而命题q:不等式ax2+2x﹣1>0有解时a>﹣1.
又命题q是假命题,
∴a≤﹣1,
故命题p是真命题且命题q是假命题时,
a的取值范围为a≤﹣1.
点评:若p为真命题时,参数a的范围是A,则p为假命题时,参数a的范围是CRA.这个结论在命题的否定中经常用到,请同学们熟练掌握