- 试题详情及答案解析
- (2014•宿州三模)过双曲线(a>0,b>0)的左焦点F(﹣c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,若E为线段FP的中点,则双曲线的离心率为( )
- 答案:D
- 试题分析:双曲线的右焦点的坐标为(c,0),利用O为FF'的中点,E为FP的中点,可得OE为△PFF'的中位线,从而可求|PF|,再设P(x,y) 过点F作x轴的垂线,由勾股定理得出关于a,c的关系式,最后即可求得离心率.
解:设双曲线的右焦点为F',则F'的坐标为(c,0)
因为抛物线为y2=4cx,所以F'为抛物线的焦点
因为O为FF'的中点,E为FP的中点,所以OE为△PFF'的中位线,
属于OE∥PF'
因为|OE|=a,所以|PF'|=2a
又PF'⊥PF,|FF'|="2c" 所以|PF|="2b"
设P(x,y),则由抛物线的定义可得x+c=2a,
∴x=2a﹣c
过点F作x轴的垂线,点P到该垂线的距离为2a
由勾股定理 y2+4a2=4b2,即4c(2a﹣c)+4a2=4(c2﹣a2)
得e2﹣e﹣1=0,
∴e=.
故选D.
点评:本题主要考查双曲线的标准方程,以及双曲线的简单性质的应用,考查抛物线的定义,考查运算求解能力,考查数形结合思想、化归与转化思想,属于中档题.