- 试题详情及答案解析
- (2013•烟台一模)已知数列{an}(n∈N*)是各项均为正数且公比不等于1的等比数列,对于函数y=f(x),若数列{1nf(an)}为等差数列,则称函数f(x)为“保比差数列函数”.现有定义在(0,+∞)上的三个函数:①f(x)=;②f(x)=ex ③f(x)=,则为“保比差数列函数”的是( )
- 答案:C
- 试题分析:设数列{an}的公比为q(q≠1),利用保比差数列函数的定义,验证数列{lnf(an)}为等差数列,即可得到结论.
解:设数列{an}的公比为q(q≠1)
①由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=ln﹣ln=ln=﹣lnq是常数,∴数列{lnf(an)}为等差数列,满足题意;
②由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=ln﹣ln=an+1﹣an不是常数,∴数列{lnf(an)}不为等差数列,不满足题意;
③由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=ln﹣ln=lnq是常数,∴数列{lnf(an)}为等差数列,满足题意;
综上,为“保比差数列函数”的所有序号为①③
故选C.
点评:本题考查新定义,考查等差数列的判定,考查学生分析解决问题的能力,属于中档题.