- 试题详情及答案解析
- 设是定义在实数集上的函数,且满足下列关系,,则是( ).
A.偶函数,但不是周期函数 | B.偶函数,又是周期函数 |
C.奇函数,但不是周期函数 | D.奇函数,又是周期函数 |
- 答案:D
- 试题分析:∵f(20-x)=f[10+(10-x)]=f[10-(10-x)]=f(x)=-f(20+x).∴f(20+x)=-f(40+x),结合f(20+x)=-f(x)得到f(40+x)=f(x)∴f(x)是以T=40为周期的周期函数;
又∵f(-x)=f(40-x)=f(20+(20-x)=-f(20-(20-x))=-f(x).∴f(x)是奇函数.故选:D
考点:本题考查函数的奇偶性,周期性
点评:解决本题的关键是准确理解相关的定义及其变形,即满足f(x+T)=f(x),则f(x)是周期函数,
函数的奇偶性,则考虑f(x)与f(-x)的关系