- 试题详情及答案解析
- (10分)如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.
(1)求证:△ABQ≌△CAP;
(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.
(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.- 答案:(1)证明:∵△ABC是等边三角形
∴∠ABQ=∠CAP,AB=CA,
又∵点P、Q运动速度相同,
∴AP=BQ,
在△A BQ与△CAP中,
AB=CA
∠ABQ=∠CAP
AP=BQ
∴△ABQ≌△CAP(SAS);
(2)解:点P、Q在运动的过程中,∠QMC不变.
理由:∵△ABQ≌△CAP,
∴∠BAQ=∠ACP,
∵∠QMC=∠ACP+∠MAC,
∴∠QMC=∠BAQ+∠MAC=∠BAC=60°
(3)解:点P、Q在运动到终点后继 续在射线AB、BC上运动时,∠QMC不变.
理由:∵△ABQ≌△CAP,
∴∠BAQ=∠ACP,
∵∠QMC=∠BAQ+∠APM,
∴∠QMC=∠ACP+∠APM=180°-∠PAC=180°-60°=120°. - 试题分析:(1)根据等边三角形的性质,利用SAS证明△ABQ≌△CAP;(2)由△ABQ≌△CAP,根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=60°;(3)由△ABQ≌△CAP,根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=120°.
考点:等边三角形的性质;全等三角形的判定与性质.
点评:本题主要考查等边三角形的性质、全等三角形的判定与性质.解答本题的关键是熟练掌握全等三角形的判定与性质以及等边三角形的性质.