- 试题详情及答案解析
- (本小题满分14分)已知椭圆C:的焦距为4,其长轴长和短轴长之比为.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设F为椭圆C的右焦点,T为直线上纵坐标不为0的任意一点,过F作TF的垂线交椭圆C于点P,Q.
(ⅰ)若OT平分线段PQ(其中O为坐标原点),求的值;
(ⅱ)在(ⅰ)的条件下,当最小时,求点T的坐标.- 答案:(Ⅰ);(Ⅱ)(ⅰ);(ⅱ)当最小时,T点的坐标是(3,1)或(3,-1).
- 试题分析:(Ⅰ)利用条件“焦距为4,其长轴长和短轴长之比为”列方程求出的值从而确定椭圆的标准方程.
(Ⅱ)(ⅰ)由(Ⅰ)可得,F点的坐标是(2,0). 设直线PQ的方程为x=my+2,将直线PQ的方程与椭圆C的方程联立,得消去得到关于的一元二次方程,于是可利用韦达定理与两直线的位置关系确定的值.(ⅱ)由(ⅰ)知T为直线上任意一点可得,点T点的坐标为.利用两点间的距离公式将表示成的函数,最后利用函数或不等式的方法求出其取得最小值时的值,从而确定T点的纵坐标..
试题解析:解:(Ⅰ)由已知可得解得a2=6,b2=2.
所以椭圆C的标准方程是. (4分)
(Ⅱ)(ⅰ)由(Ⅰ)可得,F点的坐标是(2,0).
设直线PQ的方程为x=my+2,将直线PQ的方程与椭圆C的方程联立,得
消去x,得(m2+3)y2+4my-2=0,其判别式Δ=16m2+8(m2+3)>0.
设P(x1,y1),Q(x2,y2),则y1+y2=,y1y2=.于是x1+x2=m(y1+y2)+4=.
设M为PQ的中点,则M点的坐标为.
因为,所以直线FT的斜率为,其方程为.
当时,,所以点的坐标为,
此时直线OT的斜率为,其方程为.
将M点的坐标为代入,得.
解得. (8分)
(ⅱ)由(ⅰ)知T为直线上任意一点可得,点T点的坐标为.
于是,
.
所以
.
当且仅当m2+1=,即m=±1时,等号成立,此时取得最小值.
故当最小时,T点的坐标是(3,1)或(3,-1). (14分)
考点:1、椭圆的标准方程;2、直线与椭圆的位置关系综合问题.